所有作者:杨大春
作者单位:北京师范大学数学科学学院
论文摘要:Let $s\in\mathbb{R}$。 In this paper, the authors first establish the maximal function characterizations of the Besov-type space $\dot{B}^{s,\tau}_{p,q}(\mathbb{R}^n)$ with $p,\,q\in(0,\infty]$ and $\tau\in [0,\infty)$, the Triebel-Lizorkin-type space $\dot{F}^{s,\tau}_{p,q}(\mathbb{R}^n)$ with $p\in(0,\infty)$, $q\in(0,\infty]$ and $\tau\in [0,\infty)$, the Besov-Hausdorff space $B\dot{H}^{s,\tau}_{p,q}(\mathbb{R}^n)$ with $p\in(1,\infty)$, $q\in[1,\infty)$ and $\tau\in [0, \frac1{\max\{p,q\})'}]$ and the Triebel-Lizorkin-Hausdorff space $F\dot{H}^{s,\tau}_{p,q}(\mathbb{R}^n)$ with $p,\,q\in(1,\infty)$ and $\tau\in [0, \frac1{\max\{p,q\})'}]$, where $t'$ denotes the conjugate index of $t\in[1,\infty]$。 Using this characterization, the authors further obtain the local mean characterizations of these function spaces via functions satisfying the Tauberian condition and establish a Fourier multiplier theorem on these spaces。 All these results generalize the existing classical results on Besov and Triebel-Lizorkin spaces by taking $\tau=0$ and are also new even for $Q$ spaces and Hardy-Hausdorff spaces。
关键词: Hausdorff capacity Besov space Triebel-Lizorkin space Tauberian condition maximal function local mea
免费下载《Besov-型和Triebel-Lizorkin-型空间的极大函数和局部平均特征》PDF全文(已停止下载)
本站“论文下载”文章收集整理于“中国科技论文在线”,由于各种原因,本站已暂停论文下载!请前往“中国科技论文在线http://www.paper.edu.cn/”免费下载!
下一篇:多维函数的(T)模糊积分