所有作者:韩超 刘简
作者单位:北京邮电大学计算机学院
论文摘要:对于大规模社群网络中人与人之间关系的确定,社群网络分析是一种有效的方法。但是,scalability仍然是进行大规模社群网络可视化的关键性问题之一。为了能够对重要的重叠社团进行分析,我们设计了一种交互式的聚类可视化框架,从而能够对繁杂庞大的社群网络有一个整体的观察。框架使用经典的可视化分析流程:“Analyze 64257;rst—Show the important areas—Zoom, Filter and Analyze Further—Details on Demand”,即首先根据分析展示出较为重要的区域,然后对整个图形进行缩放过滤,并针对细节进行进一步的分析。为了能够交互地对大规模网络中的重要重叠社团进行可视化展示,我们将对列举真实网络中的最大完全图问题进行研究。通过利用(k-1)-core 分解算法过滤掉度较低的节点,我们改进了一些最大完全图算法来列举大规模社会网络中的全部k级最大完全图我们的算法效率很高,所以我们可以通过可视化交互的聚类技术来对大规模的社群网络的结构进行研究。为研究复杂的社会完了设计了一个可视化的分析框架以及k级最大完全图算法是我们的主要贡献。为了能够对我们的框架在实际应用中的作用进行评定,我们开发了一个可视化的拓扑分析工具——CliqueVis,并展示了一些经典的针对包含百万用户的通话网络的研究的方法。我们先获得针对通话网络图形的一个整体的展示,之后,我们可以通过放大一些我们感兴趣的社团来获得这些社团的模式的细节信息。
关键词: 可视化框架 大规模网络可视化 社会网络分析 最大完全图发现算法
免费下载《基于重叠社团发现的大规模社群网络可视化分析框架》PDF全文(已停止下载)
本站“论文下载”文章收集整理于“中国科技论文在线”,由于各种原因,本站已暂停论文下载!请前往“中国科技论文在线http://www.paper.edu.cn/”免费下载!
下一篇:一个可用于数据同步的加密协议